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• Pattern~dassification and clustering algorithms are key components of 
modern information processing systems used to perform tasks such as speech 
and image recognition, printed~character recognition, medical diagnosis, fault 
detection, process control, and financial decision making. To simplifY the task 
of applying these types of algorithms in new application areas, we have 
developed LNKnet-a software package that provides access toinore than 20 
pattern~classification, clustering, and feature~selection algorithms. Included are 
the most important algorithms from the fields of neural networks, statistics, 
machine learning, and artificial intelligence. The algorithms can be trained and 
tested on separate data or tested with automatic cross~validation. LNKnet runs 
under the UNIX operating system and access to the different algorithms is 
provided through a graphical point~and~click user interface. Graphical outputs 
include two~dimensional (2~D) scatter and decision~region plots and 1-D plots 
of data histograms, classifier outputs, and error rates during training. 
Parameters of trained classifiers are stored in files from which the parameters 
can be translated into source-code subroutines (written in the C programming 
language) that can then be embedded in a user application program. Lincoln 
Laboratory and other research laboratories have used LNKnet successfully for 
many diverse applications. 

P ATTERN~CLASSIFICATION ALGORITHMS are diffi­
cult to implement in a manner that simplifies 
the task of training, evaluating, and applying 

them correctly to new problems. At Lincoln Labora~ 
tory and other sites, researchers were spending an 
excessive amount of programming time to implement 
and debug the same classification algorithms and to 
create complex command scripts to run experiments. 
Classifiers were often implemented by different pro­
grammers using idiosyncratic programming conven~ 
tions, user interfaces, and data interfaces. This lack 
of standardization made it difficult to compare classi­
fiers and to embed them in user application pro­
grams. Consequently, to prevent this duplicate 
programming and to simplifY the task of applying 

classification algorithms, we developed LNKnet-a 
software package that provides access to more than 20 
pattern~dassification, clustering, and feature-selection 
algorithms. Included are the most important algo­
rithms from the fields of neural networks, statistics, 
machine learning, and artificial intelligence. Access to 
the different algorithms is provided through a point­
and-click user interface, and graphical outputs in­
clude nvo~dimensional (2-D) scatter and decision~ 
region plots and 1-D plots of data histograms, classifier 
outputs, and error rates during training. (Note: The 
acronym LNK stands for the initials of the last names 
of the software's three principal programmers-Rich­
ard Lippmann, Dave Nation, and Linda Kukolich). 

This article first presents an introduction to pat~ · 
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FIGURE 1. A simple pattern-classification system with image, waveform, categorical, and binary inputs. 

tern classification and then describes the LNK.net 
software package. The description includes a simple 
pattern-classification experiment that demonstrates 
how LNK.net is applied to new databases. Next, this 
article describes three LNK.net applications. In the 
first application, LNK.net radial-basis-function sub­
routines are used in a hybrid neural-network/hidden­
Markov-model isolated-word recognizer. The second 
application is an approach to secondary testing for 
wordspotting in which LNK.net multilayer perceptron 
classifiers are accessed through the system's point­
and-click interface. In the final application, LNK.net 
is used to develop a system that learns in real time the 
strategy a human uses to play an on-line computer 
game. This strategy-learning system was developed 
with the LNK.net point-and-click interface and then 
implemented for real-time performance with the 
LNK.net multilayer perceptron subroutines. 

Introduction to Pattern Classification 

T he purpose of a pattern classifier is to assign every 
input pattern to one of a small number of discrete 
classes, or groups. For example, if the input to a 
classifier is the enlarged image of cells from a Pap 
smear, the output classes could label the cells as nor­
mal or cancerous. Figure 1 shows a block diagram of a 
simple pattern-classification system. Inputs from sen­
sors or processed information from computer data­
bases are fed into a preprocessor that extracts mea­
surements or features. The features simplify the 
classification task: irrelevant information is eliminated 
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by focusing only on those properties of the raw inputs 
which are distinguishable between classes. The input 
feature measurements x 1, x2, x3, ... , xD form a 
feature vector X with D elements in each vector. The 
feature vectors, or patterns, are fed into a classifier 
that assigns each vector to one of M prespecified 
classes denoted Ci. Given a feature vector, a typical 
classifier creates one discriminant fonction, or output 
Yi• per class. The decision rule that most classifiers use 
is to assign the feature vector to the class correspond­
ing to the discriminant function, or output, with the 
highest value. All classifiers separate the space spanned 
by the input variables into decision regions, which 
correspond to regions where the classification deci­
sion remains constant as the input features change. 

The three major approaches to developing pattern 
classifiers are the probability-density-function (PDF), 
posterior-probability, and boundary-forming strategies. 
These approaches differ in the statistical quantity that 
their outputs model and in the procedures they use 
for classifier training: PDF classifiers estimate class 
likelihoods or probability density functions, poste­
rior-probability classifiers estimate Bayesian a poste­
riori probabilities [1] (hereafter referred to as poste­
rior probabilities), and boundary-forming classifiers 
form decision regions. Figure 2 illustrates the shape of 
these functions for a simple problem with one input 
feature, two classes denoted A and B, and Gaussian 
class distributions. T he PDF functions formed by 
statistical classifiers are Gaussian shaped, as shown in 
Figure 2(a) . T hese functions represent the distribu-
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tions of the input feature for the two classes. Posterior 
probabilities formed by many neural network classifi­
ers have sigmoidal shapes, as shown in Figure 2(b). 
These functions vary from 0 to 1, their sum equals 1, 
and they represent the probability of each class, given 
a specific input value. Finally, the binary indicator 
outputs of boundary-forming classifiers separate the 
input into two regions, one for class A and the other 
for class B, as shown in Figure 2(c). 

A Taxonomy of Pattern Classifiers 

Table 1 contains a taxonomy of the most common 
PDF, posterior-probability, and boundary-forming 
classifiers. The first three types of classifiers in this 
table produce continuous probabilistic outputs, while 
the last two produce binary indicator outputs. 

The first row in Table 1 represents conventional 
PDF classifiers [2, 3], which model distributions of 
pattern classes separately through the use of paramet­
ric functions. In the decision-region diagram, the green 
and blue dots represent the means of classes A and B, 
respectively, the circles denote the respective standard 
deviations for the two classes, and the black line 
represents the boundary between decision regions for 
the two classes. 

The next two rows in Table 1 contain two types of 
neural network posterior-probability classifiers. Glo­
bal neural network classifiers [ 4- 6] form output dis­
criminant functions from internal computing elements 
or nodes that use sigmoid or polynomial functions 
having high nonzero outputs over a large region of 

p(X I A) p(X I B) p(A I X) 

(a) (b) 

the input space. In the decision-region diagram, the 
three black lines represent half-plane decision-region 
boundaries formed by sigmoid nodes. Global neural 
network classifiers include multilayer perceptrons 
(MLP) trained with back propagation, Boltzmann 
machines, and high-order polynomial networks. Lo­
cal neural network classifiers [7] form output dis­
criminant functions from internal computing elements 
that use Gaussian or other radially symmetric func­
tions having high nonzero outputs over only a local­
ized region of the input space. In the decision-region 
diagram, the yellow cells represent individual com­
puting elements and the two black curves represent 
decision-region boundaries. Local neural network clas­
sifiers include radial basis function (RBF) and kernel 
discriminant classifiers. These two types of classifiers 
make no strong assumptions concerning underlying 
distributions, they both form complex decision re­
gions with only one or two hidden layers, and they 
both are typically trained to minimize the mean 
squared error between the desired and actual network 

outputs. 
The bottom two rows of Table 1 contain bound­

ary-forming classifiers. N earest neighbor classifiers 
[2, 7] perform classification based on the distance 
between a new unknown input and previously stored 
exemplars. In the decision-region diagram, the blue 
crosses and green diamonds represent training pat­
terns from two different classes, and the two black 
jagged lines represent the boundaries between those 
two classes. Nearest neighbor classifiers, which in-

p(B I X) A B 

(c) 

FIGURE 2. Discriminant functions formed by (a) probability-density-function (PDF), (b) posterior-probability, and (c) 

boundary-forming classifiers for a problem with one input feature and two classes A and B. Note that PDF classifiers 
estimate likelihoods, posterior-probability classifiers estimate posterior probabilities, and boundary-forming classifiers 
create decision regions. 
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Table 1. A Pattern-Classification Taxonomy 

Type of Classifier 
Decision Region Computing Representative 
(shaded in red) Element Classifiers 

Cf) Distribution Gaussian, 
PDF dependent Gaussian 

mixture 

~~ 
Sigmoid Multilayer perceptron, 

Global __r high-order 
polynomial network 

' Kernel Rad ial basis 
Local 

--......... · ................ 

_A_ function , kernel . ·-·--r-
i discriminant 

~ Euclidean norm K-nearest neighbor, 
Nearest • • • • • ~ I/ 

learning vector 
Neighbor 
~ quantizer 

Rule 
I Threshold logic Binary decision 

n I 
tree, 

Forming hypersphere 

Note: For a description of the five different types of classifiers listed, see the main text. 

elude conventional K-nearest neighbor (KNN) classi­
fiers and neural network learning vector quantizer 
(LVQ) classifiers, train extremely rapidly but they can 
require considerable computation time on a serial 
processor as well as large amounts of memory. Rule­
forming classifiers [2, 7- 11] use threshold-logic nodes 
or rules to partition the input space into labeled 
regions. An input can then be classified by the label of 
the region where the input is located. In the decision­
region diagram for rule-forming classifiers in Table 1, 
the black lines represent the decision-region bound­
aries formed by threshold-logic nodes or rules. Rule­
forming classifiers have binary outputs and include 
binary decision trees, the hypersphere classifier, 
perceptrons with hard-limiting nonlinearities trained 
with the perceptron convergence procedure, sigmoidal 
or RBF networks trained with differential training, 
and many machine-learning approaches that result in 
a small set of classification rules. 

No one type of classifier is suitable for all applica­
tions. PDF classifiers provide good performance when 
the probability density functions of the input features 
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are known and when the training data are sufficient 
to estimate the parameters of these density functions . 
The most common PDF classifier is the Gaussian 
classifier. The use of Gaussian density functions with 
common class covariance matrices is called Linear 
Discriminant Analysis (LDA) because the discrimi­
nant functions reduce to linear functions of the input 
features. LDA provides good performance in many 
simple problems in which the input features do have 
Gaussian distributions. But, when the training data 
are limited or when the real-world feature distribu­
tions are not accurately modeled by Gaussian distri­
butions, other approaches to classification provide 
better performance. 

Global and local neural network classifiers are both 
suitable for applications in which probabilistic out­
puts are desired. Global neural network classifiers that 
use sigmoid nodes are most suitable for applications 
such as speech recognition and handwritten-character 
recognition in which a large amount of training data 
is available, and in which the training time can be 
slow bur the speed of recognition during use must be 
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fast. These classifiers are also well suited for imple­
mentation in parallel VLSI hardware that supports 
the simple types of computation required by multi­
layer sigmoid networks. Local neural networks such 
as RBF classifiers are most suitable when the input 
features have similar scales and do not differ qualita­
tively and when shorter training times are desired at 
the expense of slightly longer classification times. 

Nearest neighbor classifiers are best suited for prob­
lems in which fast training and adaptation are essen­
tial but in which there is sufficient memory and enough 
computational power to provide classification times 
that are not too slow. 

Finally, rule-based classifiers and decision trees are 
most suitable when a minimal-sized classifier is de­
sired that can run extremely fast on a uniprocessor 
computer and when simple explanations for classifier 
decisions are desired. 

Overview of LNKnet 

LNKnet was developed to simplify the application of 
the most important neural network, statistical, and 
machine learning classifiers. We designed the software 
so that it could be used at any one of the three levels 
shown in Figure 3. 

T he point-and-click graphical user interface can be 
used to experiment rapidly and interactively with clas­
sifiers on new databases. This approach is the simplest 
way to apply classification algorithms to new data­
bases. After converting a database into a simple ASCII 
format, a user can run experiments by making the 
appropriate selections in LNKnet windows with a 
mouse and keyboard. A complex series of experi­
ments on a new moderate-sized database (containing 
thousands of patterns) can be completed in less than 
an hour. Use of the point-and-click interface does not 
require any knowledge of UNIX shell scripts, C pro­
gramming, or the way in which LNKnet algorithms 
are implemented. 

Users who want to execute long batch jobs can edit 
and run the shell scripts produced by the point-and­
click interface. This approach, which requires an un­
derstanding of shell scripts and the arguments to 

LNKnet programs, simplifies the repetitive applica­
tion of the same algorithm to many data files and 
automates the application of LNKnet when batch-

mode processing is desired. 
Finally, users with knowledge of C programming 

can work at the source-code level. At this level, C 
source code that implements LNKnet subroutines 
and libraries can be embedded in a user application 
program. We have simplified this procedure with fil­
ter programs. The programs read in LNKnet param­
eter files defming trained classifiers and create C source­
code subroutines to implement those classifiers. These 
C source-code subroutines can be embedded in a user 

application program. 
LNKnet contains more than 20 neural network, 

pattern-classification, and feature-selection algorithms 
(Table 2), each of which can be trained and then 
tested on separate data or tested with automatic cross­
validation. The algorithms include classifiers that are 
trained with labeled data under supervision, classifiers 
that use clustering to initialize internal parameters 
and then are trained with supervision, and clustering 
algorithms that are trained with unlabeled data with­
out supervision. Algorithms for Canonical Linear Dis-

Point-and-click user interface 

-·-

UNIX command-l ine programs 

Subroutines written inC that can be 
included in user application programs 

RBF_PACK.C REPORTS.C 

FIGURE 3. The three levels of using the LNKnet software 
package. Researchers can access LNKnet either through 
the point-and-click user interface, or by manually editing 
shell scripts containing LNKnet commands to run batch 
jobs, or by embedding LNKnet subroutines in application 
programs. 
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Table 2. LNKnet Algorithms 

Neural 
Network 

Algorithms 

Conventional 
Pattern-Classification 

Algorithms 

Feature-Selection 
Algorithms 

Supervised 
Training 

Multilayer perceptron (MLP) 

Adaptive step-size MLP 

Cross-entropy MLP 

Differential trained MLP 

Hypersphere classifier 

Gaussian linear discriminant 

Quadratic Gaussian 

K-nearest neighbor (KNN) 

Condensed KNN 

Binary decision tree 

Canonical Linear Discriminant 
Analysis (LOA) 

KNN forward and backward 
search 

criminant Analysis and Principal Components Analy­
sis have been provided to reduce the number of input 
features through the use of new features that are linear 
combinations of old features. KNN forward and back­
ward searches have been included to select a small 
number of features from among the existing features. 
Descriptions and comparisons of these algorithms are 
available in References 2, 6, 9, and 12 through 21. 

All LNKnet software is written in C and runs 
under the UNIX operating system. The graphical 
user interface runs under MIT X or Sun Microsystem's 
Open Windows. (Note: Reference 14 includes a com­
prehensive description of this user interface.) Graphi­
cal outputs include 2-D scatter and decision-region 
plots and overlaid internaLs plots that illustrate how 
decision regions were formed. Also available are 1-D 
histogram plots, 1-D plots of classifier outputs, and 
plots showing how the error rate and cost function 
change during training. Standard printouts include 
confosion matrices, summary statistics of the errors for 
each class, and estimates of the binomial standard 
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Combined Unsupervised­
Supervised Training 

Radial basis function (RBF) 

Incremental RBF (IRBF) 

DifferentiaiiRBF 

Learning vector quantizer (L VQ) 

Nearest-cluster classifier 

Gaussian-mixture classifier 

Diagonal/full covariance 

Tied/per-class centers 

deviations of error rates. 

Unsupervised Training 
(Clustering) 

Leader clustering 

K-means clustering 

Estimate-Maximize 
(EM) clustering 

Principal Components 
Analysis (PCA) 

LNKnet allows the training and testing of large 
classifiers with numerous input features and training 
patterns. Indeed, we have trained and tested classifiers 
having up to 10,000 parameters, or weights, and we 
have trained classifiers with more than 1000 input 
features and more than 100,000 training patterns. 
During training and testing, all control screens are 
saved automatically so that they can be restored at a 
later time if desired. This feature allows the continua­
tion and replication of complex experiments. Param­
eters of trained classifiers are stored in ftles and can be 
used by code-generation ftlters to generate freestand­
ing classifier subroutines that can then be embedded 
in user code. 

Components of Pattern-Classification 
Experiments 

T he LNKnet graphical interface is designed to sim­
plify classification experiments. Figure 4 shows the 
sequence of operations involved in the most common 
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classification experiment. At the beginning of each 
experiment, a classification algorithm is selected, and 
parameters that affect the structure or complexity of 
the resulting classifier are also chosen. These param­
eters, which are sometimes called regularization pa­
rameters, include the number of nodes and layers for 
MLP classifiers and trees, the training time and value 
of weight decay for MLP classifiers, the number of 
mixture components for Gaussian-mixture classifiers, 
the type of covariance matrix used (full or diagonal, 
grand average across or within classes) for Gaussian or 
Gaussian-mixture classifiers, the value of Kfor KNN 
classifiers, the number of centers for RBF classifiers, 
and the number of principal component features used 
as inputs to a classifier. 

A database for a classification experiment typically 
contains three separate sets of data: training data, 
evaluation data, and test data. As shown in Figure 4, 
training data are used initially to train the internal 
weights or trainable parameters in a classifier. T he 
error rate of the trained classifier is then evaluated 
with the evaluation data. This procedure is necessary 
because it is frequently possible to design a classifier 
that provides a low error rate on training data but that 
does not perform as well on other data sampled from 
the same source. Repeated evaluations are followed by 
retraining with different values for regularization pa­
rameters. The regularization parameters adjust the 
complexity of the classifier, making the classifier only 
as complex as necessary to obtain good classification 
performance on unseen data. After all regularization 

Simple 
normalization , 
PCA, or LOA 

Raw input 
data 

No 
normalization 

Change 

~ 
classifier ' 
structure 

Select 
Train 

classifier Test 
and • ... with • ... with 

classifier 
training 

evaluation 
structure 

data 
data 

l 
Final 

test with 
test data 

FIGURE 4. Components of a classification experiment. 

parameters have been adjusted, the classifier generali­
zation error rate on unseen data is estimated with the 
test data. 

One of the most important features of LNKnet is 
that it includes the ability to normalize input data 
and to select a subset of input features for classifica­
tion (Figure 5). Normalization algorithms available in 
LNKnet include simple normalization (each feature is 
normalized separately to zero mean, unit variance), 
Principal Components Analysis (PCA), and Linear 
Discriminant Analysis (LDA) [2, 22]. Feature-selec­
tion algorithms include forward and backward searches 
[22], which select features one at a time based on the 
increase or decrease in the error rate measured with a 

Select 
features 

Classifier 
input 

Use all 
features 

FIGURE 5. Feature selection and normalization available in LNKnet. 
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_j Only store shell script do not run 
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!13 Train Normal izat~io~n~:~:!]=-~S~i m=p l=e~(m=ea~n~-o~. v:ar:::ia:nc:e:_::-:,).--l ___ Select 
_j Test on Training Data 
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conditions 
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!13 Enable Plotting Plots .. . Restore Experoment Screens 

Select _j N-fold Cross-Validation 
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!13 Random presentation order 
Random Seed: 0 ___ ~ 

_j Movie Mode 
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NOTE: Entries in text fields MUST be followed by <Return> or <Tab> 

FIGURE 6. Main LNKnet window used in the vowel-classification experiment. 
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FIGURE 7. "MLP Parameters" window used in the vowel-classification experiment. 
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nearest neighbor classifier and leave-one-out cross­
validation. A forward or backward search, a PCA, or 
an LDA can be used to obtain a list of features or­
dered in terms of their presumed importance. From 
this list, a subset of features can be selected for use in 
the classification process. This subset can be the first 
(and presumably most important) features or a selec­
tion of unordered features. A user can skip either the 
normalization or feature-selection steps, thus allow­
ing the classifier to use any or all features of the raw 
data or the normalized data, as shown in Figure 5. 

A Vowel-Classification Experiment 

The use of LNKnet to run experiments is best illus­
trated by an example. The experiment presented here 
uses vowel data from a study performed by G.E. 
Peterson and H.L. Barney [23], in which the first and 
second vocal-tract resonance frequencies were mea­
sured from the spectra of 10 vowels produced by 
7 6 men, women, and children saying the following 
words: head, hid, hod, had, hawed, heard, heed, hud, 
who'd, and hood. These two formant frequencies x1 

and x2, which are known to be important for identify­
ing vowel sounds, were used as inputs to a classifier 
with 10 classes consisting of the 10 vowels. Selecting 
parameters on LNKnet windows and running the 
vowel-classification experiments described in the fol­
lowing paragraphs took less than 3 min on a Sun 
Spare 10 workstation. 

Figure 6 shows the main LNKnet control window 
that was used in our vowel-classification experiment. 
To set up the experiment, we selected the vowel data­
base, chose the MLP classifier and its structure, checked 
the "Train," "Eval," and "Enable Plotting" boxes in 
the main window, and selected the desired types of 
plots. The database, the algorithm parameters, and 
the types of plots were selected with other windows 
that appeared when the appropriate buttons were 
selected in the main window. For example, the "Algo­
rithm Params . .. " button in the upper right of the 
main window brought up the "MLP Parameters" win­
dow shown in Figure 7. The "MLP Parameters" win­
dow was used to select the network structure (2 in­
puts, 8 hidden nodes, and 10 outputs), the number of 
times to pass through the entire training dataset dur­
ing training (100 passes, or epochs), the gradient-

descent step size used during training (0.2), the cost 
function, and other parameters that control the train­
ing of MLP classifiers. (Note: For a description of 
MLP classifiers, see Reference 6.) 

LNKnet sets all of these parameters (as well as the 
parameters in all of the other windows) automatically 
to the most typical default values so that a user does 
not have to set each of the parameters manually. A 
user also has the capability to create new default 
parameter settings by making the desired selections in 
all windows, followed by selecting the "SAVE DE­
FAULTS" button in the upper left of the LNKnet 
main window. Whenever an experiment is started, 
the parameter settings for all LNKnet windows are 
automatically stored in a file so that a user can read in 
the parameter settings at a later time (e.g., to continue 
a prior experiment after performing other experiments) 
by selecting the "Restore Experiment Screens" button 
in the main window. 

Once all classifier parameters have been chosen, a 
user begins an experiment by selecting the "START" 
button in the main window. This step first creates a 
UNIX shell script to run an experiment and then 
runs the shell script in the background. The results of 
the experiment are written in a file and printed to the 
Open Windows window used to start LNKnet. After 
each pass through the training data, LNKnet prints 
the current classification error rate and the current 
mean squared error. 

When training is completed, a summary of the 
training errors is printed, followed by the confusion 
matrix and error summary for the evaluation data, as 
shown in Tables 3 and 4. The confusion matrix con­
tains totals for the number of times the input pattern 
was from class ci' 1 ~ i ~ M, and the number of times 
the decision, or computed class, was from class S, 
1 ~ j ~ M, over all patterns in the evaluation dataset. 
(Note: For the ideal case in which LNKnet classifies 
every input correctly, all of the off-diagonal entries in 
the confusion matrix would be zero.) Summary statis­
tics contain the number of input patterns in each 
class, the number of errors and the percent errors for 
each class, the estimated binomial standard deviation 
of the error estimate, the root-mean-square (rms) dif­
ference between the desired and the actual network 
outputs for patterns in each class, and the label for 
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Table 3. Classification Confusion Matrix for the Vowel-Classification Experiment 

Computed Class 
2 3 4 5 6 7 8 9 10 Total 

Desired 

Class 

1 16 0 0 0 0 0 0 0 0 17 

2 0 16 0 0 0 0 2 0 0 0 18 

3 0 0 17 0 0 0 0 3 0 0 20 

4 0 0 11 0 0 5 0 0 18 

5 0 0 2 0 12 0 0 0 0 2 16 

6 0 0 0 5 0 2 0 2 11 

7 0 0 0 0 0 0 18 0 0 0 18 

8 0 0 0 0 0 0 17 0 0 18 

9 0 0 0 0 0 0 0 0 13 3 16 

10 0 0 0 0 0 3 0 2 2 7 14 

Total 18 18 19 11 13 9 20 29 15 14 166 

Table4. Error Report for the Vowel-Classification Experiment 

Binomial 
Number Number Percent Standard rms 

Class of Patterns of Errors Errors Deviation Errors Label 

17 5.88 ±5.7 0.152 head 

2 18 2 11.11 ±7.4 0.158 hid 

3 20 3 15.00 ±8.0 0.159 hod 

4 18 7 38.89 ± 11.5 0.219 had 

5 16 4 25.00 ± 10.8 0.176 hawed 

6 11 6 54.55 ± 15.0 0.263 heard 

7 18 0 0.00 0.0 0.064 heed 

8 18 5.56 ±5.4 0.122 hud 

9 16 3 18.75 ±9.8 0.150 who'd 

10 14 7 50.00 ± 13.4 0.259 hood 

Overall 166 34 20.48 ± 3.1 0.175 
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each class. In our vowel-classification experiment, 
the labels were the 10 words used to produce the 
10 vowels. 

The results of our vowel-classification experiment 
are shown in Table 4. Note that the overall error rate 
on the evaluation data was 20.48%, there were ap­
proximately equal numbers of patterns for each class, 
and rhe classes that caused the most confusions were 
"heard," "hood," and "had." These results were near 
the best that can be obtained with this database. The 
error rate was high (roughly 20%) because we used 
only two input features , thus ignoring the dynamics 
of speech production. We also did not consider the 
gender and age of the talkers. 

By checking the appropriate boxes in the LNKnet 
"Plotting Controls" window, we specified the draw­
ing of three plots. Figure 8 shows the resulting three 
overlaid 2-D plots: a decision-region plot (the solid 
colored regions), a scatter plot of the evaluation data 
(the small white-rimmed squares), and an internals 
plot (the black lines). The decision-region plot indi­
cates the classification decision formed by the MLP 
classifier for any input feature vector in the plot area. 
For example, input feature vectors in the upper right 
yellow region are classified as the vowel in "had." It 
should be noted that the values of these features were 
normalized wirh simple normalization across all classes. 
The scatter plot shows the evaluation data, color coded 
to show the different classes. Thus classification errors 
are indicated by squares whose colors do not match 
the background color of the decision-region plot. The 
internals plot shows how internal computing elements 
in each classifier form decision-region boundaries. 
For the MLP classifier, LNKnet draws lines represent­
ing hyperplanes defined by nodes in the first hidden 
layer [6]. (Wirh Gaussian, Gaussian-mixture, and RBF 
classifiers, LNKnet draws ovals showing the centers 
and variances of the Gaussian functions used in the 
classifiers.) These hyperplane lines for the MLP classi­
fier demonstrate how decision-region borders are 
formed and often help determine the minimum 
number of hidden nodes that are required. For ex­
periments involving more than two input features, we 
can create 2-D plots by selecting any two input fea­
tures of interest and setting the other inputs to fixed 
values. 

During the vowel-classification experiment, 
LNKnet also produced profile and histogram plots. 
Figure 9(a) is a profile of the 10 classifier outputs 
shown with different colors for the case in which the 
second input feature x2 is set to 0.0 and the first 
feature xi is swept from -2.0 to 4.0. This case corre­
sponds to a plot of the network outputs over a hori­
zontal line (x2 = 0.0) that bisects Figure 8. In Figure 
9(a) the sum of all of the 10 outputs is shown in 
black. This sum will be close to 1.0 for a well-trained 
classifier that estimates Bayesian posterior class prob­
abilities accurately. A 1-D decision-region plot is pro­
vided at the bottom of Figure 9(a) to indicate which 
class is chosen as the first input feature xi is swept 
over the plotted range. Gray vertical lines, drawn 
wherever there is a change in the choice of class, 
indicate the decision-region boundaries. Figure 9(b) 
is a histogram in which the colored squares above the 
horizontal axis represent patterns that the current 
model has classified correctly. The squares below indi­
cate misclassified patterns. The squares are color coded 
by class and only those patterns in the evaluation 
dataset which are within a prespecified distance of the 
X2 = 0.0 line in Figure 8 are included in this histo­
gram. Figures 9(a) and 9(b) show the shapes of the 
discriminant functions formed by the classifier out­
puts; the plots help users to infer the input ranges 
over which these functions may be used reliably to 
estimate posterior probabilities and likelihoods. 

Figure 10, the final plot produced during the vowel­
classification experiment, shows how the rms error 
between the desired and actual network outputs de­
creases during training. In the experiment, 338 unique 
patterns were presented to LNKnet in random order 
during each training pass. There were 1 00 passes 
through the training data; thus a total of 33,800 
training trials were performed, and the rms error was 
plotted once for each pass. (Note: T his training rook 
less than 30 sec on a Sun Spare 10 workstation.) As 
can be seen in Figure 10, the rms error dropped from 
above 0.3 to below 0.2 with most of the reduction 
occurring early in training. Plots such as Figure 10 are 
useful to determine whether gradient descent training 
has converged and to study how changes in step size 
and other training parameters affect the error 
convergence. 
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Three LNKnet Applications 

Lincoln Laboratory, the FBI, Rome Laboratory, the 
Air Force Institute ofTechnology (AFIT), and other 
research laboratories have used LNKnet software for 
many diverse applications. This section summarizes 
three such applications at Lincoln Laboratory. First, 
we describe a hybrid neural-network/hidden-Markov­
model isolated-word recognizer that uses LNKnet 
REF-classifier subroutines. Next, we describe experi­
ments in which secondary testing with LNKnet MLP 
classifiers improved the wordspotting accuracy of a 
hidden-Markov-model wordspotter. Finally, we de­
scribe a software program that rapidly learns to repli­
cate human game-playing strategy by using LNKnet 
MLP subroutines. In addition to these three examples, 
LNKnet software has facilitated the development of 
new pattern-classification algorithms, including the 
boundary hunting RBF classifier described in Refer­
ence 24. 

Isolated- Word Recognition Using a Hybrid 
Neural-Network/Hidden-Markov-Model System 

Many researchers are using neural networks to esti­
mate the local per-frame probabilities that are re­
quired in hidden-Markov-model (HMM) speech 
recognizers [25, 26]. Previously, these probabilities 
were estimated through the use of non-discriminant 
training with Gaussian and Gaussian-mixture proba­
bilistic models. The understanding that network our­
puts are posterior probabilities allows the networks to 
be integrated tightly with HMM and other statistical 
approaches. Figure 11 shows a hybrid neural-network/ 
HMM speech recognizer that combines radial basis 
function (RBF) neural networks and HMMs for the 
speech recognition of isolated words [26, 27]. We 
have developed this system by integrating LNKnet 
REF-classifier subroutines with HMM software. The 
RBF networks in the system produce posterior prob­
abilities representing the probability that a specific 
subword acoustic speech unit occurred, given input 
features from a 10-msec input speech frame. 

By dividing the network outputs by the class prior 
probabilities, the system normalizes the outputs to be 
scaled likelihoods. (Note: The prior probabilities are 
the estimated frequency of occurrence of each speech 

0.35 
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Q) 0.25 
(J) 

§ 
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0.15 
0 10,000 20,000 30,000 

Trials 

FIGURE 10. Plot of rms error during training for the vowel­
classification experiment of Figure 8. 

sound.) The scaled likelihoods can then be fed to 
Viterbi decoders [28] that perform nonlinear rime 
alignment to compensate for varying talking rates and 
differences in word pronunciation. The Virerbi de­
coders align the input frames with the class labels of 
subword speech units and specify the correct labels 
for all frames. One Virerbi decoder for each keyword 
to be detected produces an accumulated output score 
for every keyword ar the end of each input utterance. 

We rested the hybrid recognizer on a difficult talker-

Keyword1 score t 

Speech 
input 

Keyword2 score t 
Viterbi 
decoders 

Radial 
basis 
function 
(RBF) 
classifier 

FIGURE 11 . A hybrid isolated-word recognizer that uses 
radial basis function (RBF) networks to generate posterior 
probabilities for statistical Viterbi decoders [28]. In this 
example, there are three states (the beginning , middle, and 
end) for the keyword in each decoder. 

VOLUME 6, NUMBER 2. 1993 THE LINCOLN LABORATORY JOURNAL 261 



• LIPPMANN, KUKOLICH, AND SINGER 
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification 

1.0 

a; 
..0 0.8 
~ 
..... 
u 

~ 
0 
u 0.6 -0 
>-u 

± 2a bounds 
c: 
Q) 
:::J 

~ 0.4 -Q) 
> 
~ 
a; 0.2 
0::: 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

RBF network output (all nodes) 

FIGURE 12. Comparison of RBF network outputs to poste­
rior probabilities. 

independent recognition task in which the goal was 
to distinguish between the nine spoken letters of the 
alphabet containing the long vowel "e" (i.e., the let­
ters b, c, d, e, g, p, t, v, and z) . For this task, the system 
achieved error rates that were lower than those ob­
tained by a state-of-the-art high-performance Gaussian 
tied-mixture recognizer with an equal number of train­
able parameters [26, 27]. 

The good performance achieved by this and other 
hybrid recognizers suggests that the network outputs 
do closely approximate posterior probabilities. We 
evaluated the accuracy of posterior-probability esti­
mation by examining the relationship between the 
network output for a given input speech frame and 
the probability of classifying that frame correctly. If 
network outputs do represent posterior probabilities, 
then a specific network output value (between 0.0 
and 1.0) should reflect the relative frequency of oc­
currence of correct classifications of frames that pro­
duced that output value. Furthermore, if posterior­
probability estimation is exact, then the relative 
frequency of occurrence of correct classifications should 
match the network output value exactly. 

Because there was only a finite quantity of data, we 
partitioned the network outputs into 100 equal-sized 
bins between 0.0 and 1.0. The values of RBF outputs 
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were then used to select bins whose counts were 
incremented for each speech frame. In addition, the 
single correct-class bin count for the one bin that 
corresponded to the class of the input pattern was 
incremented for each frame. We then computed the 
ratio of the correct-class count to the total count and 
compared that ratio to the value of the bin center. For 
example, our data indicated that for the 61,466 frames 
of the speech utterances that were used for training, 
outputs of the RBF networks in the range from 0.095 
to 0.105 occurred 29,698 times, of which 3067 in­
stances were correct classifications. Thus the relative 
frequency of correct labeling for this particular bin 
was 0.103, which was close to 0.10, the bin center. 

A plot of the relative frequencies of correct labeling 
for each bin versus the bin centers gives a measure of 
the accuracy of posterior-probability estimation by 
the RBF neural networks. Figure 12 shows the mea­
sured relative frequency of correct labeling for the 
RBF networks and the 2a bounds for the binomial 
standard deviation of each relative frequency. Note 
that the relative frequencies tend to be clustered around 
the diagonal and many are within the 2a bounds. 
This result suggests that network outputs are closely 
related to the desired posterior probabilities. 

Secondary Testingfor Wordspotting 

In secondary testing, a neural network is used to 

correct the more frequent confusions made by a sim­
pler, more conventional classifier or expert system. 
Secondary testing can provide improved performance 
if (1) the confusions are limited to a small number of 
input classes, (2) there is sufficient training data for 
these classes, and (3) the input features provide infor­
mation useful in discriminating between these classes. 
One application for secondary testing is in word­
spotting. 

Recent research at Lincoln Laboratory, Bell Labo­
ratories, and other speech research sites [28-30] has 
begun to focus on the use of words potters to handle 
unconstrained verbal interactions between humans 
and machines. Wordspotters do not try to recognize 
every input, but instead they try to determine when 
certain keywords or phrases occur. Thus extraneous 
noise and words that do not change the meaning 
of the verbal input can be ignored and an open micro-

t 
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phone (i.e., a microphone that is left on continu­
ously) can be used. Potential commercial applica­
tions of wordspotting include the sorting and 
selecting of voice mail by talker and topic, the voice 
control of consumer products, the use of voice­
activated call buzzers for hospital patients to sum­
mon nurses, and the replacement of telephone 
operators for simple functions. 

We have applied secondary testing to the output 
of a state-of-the-art talker-independent HMM word­
spotter developed at Lincoln Laboratory [28, 31]. 
Our experiments used the Road Rally speech database 
containing telephone conversations berween talkers 
performing a navigational task with road maps. To 
create a training dataset, we ran the HMM words potter 
on the Road Rally conversations and extracted speech 
segments that corresponded to putative hits for the 
following 20 keywords: Boonsboro, Chester, Conway, 
interstate, look, Middleton, minus, mountain, pri­
mary, retrace, road, secondary, Sheffield, Springfield, 
thicket, track, want, Waterloo, Westchester, and back­
track. The putative hits represented speech frames 
where the 20 keywords might have occurred. Features 
derived from the average cepstra at the beginning, 

~ 

Keywords r----. 
with 
high 

false-alarm 
rates 

~ 

Putative 
Speech HMM hits 

word spotter 

middle, and end of each putative hit were then ex­
tracted to create training patterns for LNKnet. (Note: 
Cepstra are found by taking the fast Fourier trans­
form [FFT] of the windowed input speech, followed 
by taking the smoothed log magnitude of the FFT, 
and then by taking the inverse FFT of the resulting 
quantity.) Next, we used LNKnet neural nerworks for 
the further classification of the putative hits as valid 
putative hits or false alarms, as shown in Figure 13. 
In this approach, one neural nerwork classifier was 
trained to discriminate berween correct hits and false 
alarms for each word that generated an excessive num­
ber of false alarms. Putative hits from words that 
generated few false alarms were passed on without 
processmg. 

We performed all experiments with the LNKnet 
point-and-click interface. For the classifier develop­
ment with LNKnet, cross-validation testing was cho­
sen because there were so few training patterns for 
most keywords. Using N-fold cross-validation testing, 
LNKnet split the training data into N equal-sized 
folds and performed N experiments, each time train­
ing with N- 1 folds and testing with the remaining 
fold. LNKnet performed both the splitting of the 
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FIGURE 13. Secondary testing for wordspotting. The neural networks are used to distinguish between the valid putative hits 
and fa lse alarms that the hidden-Markov-model (HMM) word spotter has detected. 
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FIGURE 14. W ordspotting detection accuracy versus num­
ber of false alarms per keyword per hour generated with 
and without neural network secondary testing. 

data and the cross-validation testing automatically. 
The average error rate that occurred during the test­
ing of the N remainder folds was a good estimate of 
the generalization error on unseen data. The experi­
ments suggested that multilayer perceptrons trained 
with back-propagation and with one hidden layer 
provided the best performance with the limited num­
bers of putative hits available for training. Further­
more, the average cepstra extracted from the begin­
ning and end of each putative hit were found to 
provide good discrimination. 

We performed further secondary-testing experi­
ments with the same database and keywords as part of 
a Defense Advanced Research Projects Agency 

A is better 

ROWS HOLES HEIGHT JAGS 

Input features for posit ion A 

(DARPA) workshop on speech evaluation held in 
Washington, D .C., on 10 and 11 March 1992. Refer­
ence 31 contains derails of this evaluation and Figure 
14 summarizes the results. The blue curve in the 
figure shows the detection accuracy of the primary 
HMM wordspotter as a function of the number of 
false alarms per keyword per hour. Note that the 
detection accuracy increases as we allow the number 
of false alarms to increase. The red curve in the figure 
shows the increase in detection accuracy achieved 
with neural networks used for secondary resting. One 
network for each of the four words that produced 
many false alarms was used to reclassifY putative hits 
produced by the primary wordspotter. Overall, this 
postprocessing reduced the false-alarm rate by an 
average of 16.4%, thus demonstrating that neural 
networks can be used effectively as wordspotter 
postprocessors. Further analyses showed that the extra 
computational overhead required by secondary rest­
ing was much less than 5%. 

Learning a Game-Playing Strategy 
from a Human Player 

Neural network classifiers can learn to reproduce the 
responses of human experts to new situations in tasks 
as diverse as driving a van [32] and playing backgam­
mon [33]. An example of this type of learning is 
netris, a program that we created using LNKner MLP­
classifier subroutines. Netris learns the strategy that a 
human uses to play a modified version of Tetris, a 
popular computer game. 

B is better 

ROWS HOLES HEIGHT JAGS 

Input features for position B 

FIGURE 15. Neural network used to learn a human player's preferences for positioning 
pieces in the computer game Tetris. 

264 THE liNCOLN LABORATORY JOURNAL VOLUME 6. NUMBER 2. 1993 

! 



• LIPPMANN, KUKOLICH, AND SINGER 
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification 

In Tetris, different-shaped pieces appear one by one 
at the top of a rectangular playing grid and fall to­
wards the bottom of the grid. A player must rotate (in 
90° increments) and move (either left or right) each 
piece such that the pieces form complete solid rows 
across the bottom of the grid. The solid rows disap­
pear, making room for more pieces, and points are 
awarded for each solid row. If the player is unable to 
complete solid rows across the bottom of the grid, the 
playing field will begin to fill up. The game ends 
when gridlock occurs at the top of the playing field 
and no new pieces have any room to fall. (Note: 
Readers who are unfamiliar with Tetris may look ahead 
to Figure 16, which contains two examples of play­
ing fields.) 

The netris program allows a human to play Tetris 
while simultaneously training a neural network to 
play in an adjacent screen. The network is trained 
with LNKnet subroutines to try to mimic the human 
player's decisions. During the training process, the 
move selected by the human for each falling piece is 
paired with all other permissible moves, thus creating 
multiple training patterns. A preference network trained 
with these patterns can then be used to select moves 
for new pieces in a different playing grid. The prefer­
ence network finds the best move by comparing pairs 
of all permissible moves, always retaining the move 
that is judged better. This process requires only N 
comparisons (given N possible moves) because the 
rejected move is dropped after each comparison and 
only the winning move is kept for comparison with 
the remaining moves. T he network trains rapidly (en­
abling real-time learning) and reproduces a human 
player's decisions accurately. If the human makes con­
sistently good moves, the network will gradually learn 
to play better and better. 

Initial experiments led to the simple position-pref­
erence network shown in Figure 15. The network has 
eight linear input nodes, two sigmoid output nodes, 
and 18 weights (including two bias weights not 
shown). For the input features to the network, a 
human player has selected certain important charac­
teristics of the piece distribution at the bottom of the 
Tetris playing field. T he input features selected are the 
number of rows completed by the falling piece 
(ROWS), the number of holes created below the piece 

0 rows completed 
6 pieces dropped 

(a) 

18 rows completed 
50 pieces d rapped 

J 

(b) 

FIGURE 16. Configuration of pieces by preference network 
with (a) no training and (b) after training on 50 pieces that 
were positioned by a human player in the popular com­
puter game Tetris. 

(HOLES), the maximum height of the piece 
(HEIGHT), and the variability in the contour formed 
by the tops of all pieces QAGS) . These four input 
features are provided for the two permissible and 
unique moves (A and B) that are being compared, 
and the network determines whether A or B is pre­
ferred by selecting the move corresponding to the 
output node with the highest value. 

Figure 16(a) shows an example of how pieces pile 
on top of one another without forming rows when 
the preference network has not been trained. Without 
such training, gridlock occurs in the playing field 
after about 9 to 13 pieces have fallen. Figure 16(b) 
shows how the pieces fall more purposefully after the 
network has been trained with only 50 decisions made 
by an unskilled human player. With such training, 18 
rows have been completed after 50 pieces have fallen, 
and the strategy used by the human player is being 
imitated by the preference network. 
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Summary 

A software package named LNKnet simplifies the 
task of applying neural network, statistical, and ma­
chine-learning pattern-classification algorithms in new 
application areas. LNKnet classifiers can be trained 
and tested on separate data or tested with automatic 
cross-validation. The point-and-dick interface of the 
software package enables non-programmers to per­
form complex pattern-classification experiments, and 
structured subroutine libraries allow classifiers to be 
embedded in user application programs. LNKnet has 
been used successfully in many research projects, in­
cluding the development of a hybrid neural-network/ 
hidden-Markov-model isolated-word recognizer, the 
improvement of wordspotting performance with sec­
ondary testing, and the learning of a human's game­
playing strategies. LNKnet software has also been 
applied in other diverse areas, including talker identi­
fication, talker-gender classification, hand-printed­
character recognition, underwater and environmental 
sound classification, image spotting, seismic-signal 
classification, medical diagnosis, galaxy classification, 
and fault detection. 

LNKnet is currently available through the MIT 
Technology Licensing Office. 
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